Statistical Predictions in String Theory and Deep Generative Models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DEVELOPMENT IN STRING THEORY

The string theory is a fast moving subject, both physics wise and in the respect of mathematics. In order to keep up with the discipline it is important to move with new ideas which are being stressed. Here I wish to give extracts from new papers of ideas which I have recently found interesting. There are six papers which are involved: I ."Strings formulated directly in 4 dimensions " A. N...

متن کامل

superstring scatterng from dbranes and wess zumino terms in string theory

دو هدف را برای انجام این پایان نامه دنبال می کنیم . نشان می دهیم که بسط دامنه پراکندگی یک میدان راموند-راموند دو میدان پیمانه ای و یک میدان تاکیونی caat بسط سازگاری است که این نکته بیانگر آنست که بسط تاکیونها که بسط انرژی پایین نیست را یافته ایم و این بسط با بسط aatt,ctta,cta,cttt سازگار است با مقایسه با دامنه پراکندگی تعدادی از تصحیحات کنشهای tachyonic dbi, wess-zumino را می یابیم .

15 صفحه اول

Learning Deep Generative Models

Building intelligent systems that are capable of extracting high-level representations from high-dimensional sensory data lies at the core of solving many artificial intelligence–related tasks, including object recognition, speech perception, and language understanding. Theoretical and biological arguments strongly suggest that building such systems requires models with deep architectures that ...

متن کامل

Auxiliary Deep Generative Models

Deep generative models parameterized by neural networks have recently achieved state-ofthe-art performance in unsupervised and semisupervised learning. We extend deep generative models with auxiliary variables which improves the variational approximation. The auxiliary variables leave the generative model unchanged but make the variational distribution more expressive. Inspired by the structure...

متن کامل

Learning Deep Generative Models

Learning Deep Generative Models Building intelligent systems that are capable of extracting high-level representations from high-dimensional sensory data lies at the core of solving many AI related tasks, including object recognition, speech perception, and language understanding. Theoretical and biological arguments strongly suggest that building such systems requires models with deep architec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fortschritte der Physik

سال: 2020

ISSN: 0015-8208,1521-3978

DOI: 10.1002/prop.202000005